
Training of State-of-the-Art
Sentence Embedding Models

Nils Reimers
Hugging Face

www.SBERT.net

Sentence Embeddings Model

How to learn Python?

[[0.1, 0.2, …], [0.8, 0.5], …]

BERT

Pooling

[0.4, 0.3, 0.7 …]

Nils Reimers, Iryna Gurevych. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. EMNLP 2019

Contextualized Word Embeddings

Fixed Sentence Embeddings

▪ Have positive pairs:
(a1, p1)
(a2, p2)
(a3, p3)

▪ Examples:
▪ (query, answer-passage)
▪ (question, duplicate_question)
▪ (paper title, cited paper title)

▪ (ai, pi) should be close in vector space

▪ (ai, pj) should be distant in vector space (i != j)
▪ Unlikely that e.g. two randomly selected questions are similar

▪ Also called “training with in-batch negatives”, InfoNCE or NTXentLoss

Multiple Negative Ranking Loss

a1

p1
p2

p3

p4

p5

Multiple Negative Ranking Loss

▪ Mathematical Definition

▪ Sim: Similarity function between (a, p)
▪ Cosine-Similarity

▪ Dot-Product

Multiple Negative Ranking Loss
Intuitive Explanation
▪ a1: How many people live in Berlin?

▪ p1: Around 3.5 million people live in Berlin

▪ p2: Washington DC is the capital of the US

▪ p3: The 2021 Olympics are held in Japan

▪ Compute text embeddings & compute similarities:
▪ sim(a1, p1) = 0.5

▪ sim(a1, p2) = 0.3

▪ sim(a1, p3) = 0.1

▪ See it as classification task and use Cross-Entropy Loss:
▪ Prediction: [0.5, 0.3, 0.1]

▪ Gold: [1, 0, 0]

Multiple Negative Ranking Loss
Intuitive Explanation
▪ (a1: How many people live in Berlin?, p1: Around 3.5 million people live in Berlin)

(a2: What is the capital of the US?, p2: Washington DC is the capital of the US)
(a3: Where are the Olympics this year?, p3: The 2021 Olympics are held in Japan)

▪ Compute text embeddings & compute similarities:

▪ See it as classification task and use Cross-Entropy Loss:
▪ Gold: [1, 0, 0,

0, 1, 0,
0, 0, 1]

[sim(a1, p1), sim(a1, p2), sim(a1, p3)
sim(a2, p1), sim(a2, p2), sim(a2, p3),
sim(a3, p1), sim(a3, p2), sim(a3, p3)]

sim(vec_a, vec_b) = vec_a * vec_bT =

Multiple Negatives Ranking Loss
Code

https://github.com/UKPLab/sentence-
transformers/blob/master/sentence_transformers/losses/MultipleNegativesRankingLoss.py

Multiple Negatives Ranking Loss
Similarity Functions
▪ How to compute sim(a, b)?

▪ a, b are vectors

▪ Dot-product: dot_prod(a, b) = abT

▪ Cosine-Similarity: cos_sim(a, b) = (abT) / (||a|| ||b||)
▪ Does not work well, scores differences are too small

▪ Scaled Cosine-Similarity: scaled_cos_sim(a, b) = C * cos_sim(a, b)
▪ Works well with e.g. C=20

▪ Scaled dot-product: scaled_dot_prod(a, b) = C * dot_prod(a, b)

Network Architecture – For Training with
Cosine Similarity

How to learn Python?

[[0.1, 0.2, …], [0.8, 0.5], …]

BERT

Pooling

[0.4, 0.3, 0.7 …]

Contextualized Word Embeddings

Fixed Sentence Embeddings

Norm

[0.2, 0.1, 0.4 …] Sentence Embedding with
Length 1

▪ Cosine-Similarity becomes simply dot-product

▪ Euclidean-distance is proportional to cosine-
similarity
▪ K-means clustering is now based on cossim

▪ Must use scaled_dot_prod for training

Cosine-Similarity vs. Dot-Product

Cosine-Similarity

▪ Vector has highest similarity to itself
▪ cos_sim(a, a) = 1

▪ With normalized vectors, equal to
dot_product
▪ With max vector length = 1

▪ With normalized vectors, proportional
to Euclidian distance
▪ Works with k-means clustering

https://arxiv.org/abs/2104.08663
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/XboxInnerProduct.pdf

Dot-Product

▪ Other vectors can have higher dot-
product
▪ dot(a, a) < dot(a, b)

▪ Might be slower with certain
approximate nearest neighbor
methods
▪ Max vector length not know

▪ Does not work with k-means clust.

https://arxiv.org/abs/2104.08663

Cosine-Similarity vs. Dot-Product

▪ Semantic search: Given short query, find longer passage

▪ Cosine-Similarity: Prefers retrieval of short passages close to query

▪ Dot-Product: Prefers longer passages (longer passage = longer vector = higher dot
product)

https://arxiv.org/abs/2104.08663

https://arxiv.org/abs/2104.08663

Optimizing the Multiple-Negatives-Ranking-Loss

▪ Training with scaled_cos_sim(a, b) = C * cos_sim(a, b)
▪ How to choose the scale C? <= unclear, common values 14-20

▪ ConveRT paper: Start at 1, end at 23, increase over first 10k steps

▪ CLIP paper: scaled_cos_sim(a, b) = exp(C) * cos_sim(a, b)
with C a learnable parameter

▪ Unclear impact
▪ Will it make a difference?

▪ Does it depend on the data / task?

▪ Symmetric Multiple-Negatives-Ranking-Loss
▪ Used in CLIP Paper

▪ Compute: (Loss(A, P) + Loss(P, A)) / 2

▪ Swap anchor & positives (e.g. given answer, what is the question?

▪ Unclear impact

Multiple-Negatives-Ranking-Loss with
Additive Margin

▪ sim ai, p𝑗 = ቊ
𝑠𝑖𝑚 𝑎𝑖, 𝑝𝑖 − 𝑚 𝑖𝑓 𝑖 = 𝑗

𝑠𝑖𝑚(𝑎𝑖, 𝑝𝑗)

▪ Substract value m from positive pairs
▪ Consine-similarity with margin 0.3 used in LaBSE paper

with translation pairs

▪ Unclear impact of margin for other tasks / datasets

▪ Used in: LaBSE: https://arxiv.org/abs/2007.01852 & https://arxiv.org/abs/1902.08564

Multiple Negative Ranking Loss
Hard Negatives
▪ Larger batch size => task more difficult => better results

▪ Given query, which of the 10 passages provide the answer?

▪ Given query, which of the 1k passages provide the answer?

Image: https://arxiv.org/pdf/2010.08191.pdf

Multiple Negative Ranking Loss
Hard Negatives
▪ Train with tuples:

(a1, p1, n1)
(a2, p2, n2)

▪ ni should be similar to pi but not match with ai

▪ Bad example:
a: How many people live in London?
p: Around 9 million people live in London
n: London has a population of 9 million people.

▪ Good example:
a: How many people live in London?
p: Around 9 million people live in London
n: Around 1 million people live in Birmingham, second to London.

a1

p1
p2

p3

p4

p5

n1
n2

n5

n4

n3

How to find hard-negatives?

▪ Quality of hard-negatives significantly improves the performance

▪ Finding good hard negatives not easy

▪ Strategy 1: Exploit structure in your data
▪ Citation graph: (Title, Cited_Paper, Paper_Cited_by_Cited_Paper)

▪ Q&A: (Question, Answer with many stars, Answer with few stars)

▪ Strategy 2: Mine hard negative:
▪ Use BM25 to find top-100 most similar texts to anchor / positive

▪ Select one of these randomly

▪ Make sure that these are actually negatives!

Improving Quality with Better Batches

▪ Assume you have (question, answer) pairs from StackExchange
▪ 140 different subforums: StackOverflow, Travel, Cooking, …

▪ Naïve approach:
▪ Randomly sample data from all pairs:

[(question_python, answer_python),
(question_visa, answer_visa),
(question_pasta, answer_pasta)]

▪ Finding the right answer for a given question is easy
▪ Question Python => Take that one programming answer in the batch…

Improving Quality with Better Batches

▪ Assume you have (question, answer) pairs from StackExchange
▪ 140 different subforums: StackOverflow, Travel, Cooking, …

▪ Better approach
▪ Sample pairs from one subforum (e.g. StackOverlow)

[(question_python, answer_python),
(question_java, answer_java),
(question_c, answer_c)]

Improving Quality with Better Batches

▪ Assume you have (question, answer) pairs from StackExchange
▪ 140 different subforums: StackOverflow, Travel, Cooking, …

▪ Even better approach (?)
▪ Sample pairs from same / similar tags (e.g. StackOverlow, Python tag)

[(question_python, answer_python),
(question_numpy, answer_numpy),
(question_pandas, answer_pandas)]

▪ Adding random batches might still be needed
▪ Otherwise StackOverflow vector space could overlap with Travel vector space
▪ 90% difficult batches, 10% easy random batches
▪ Or: start with mainly random batches, then go to difficult batches

TPU Training Specialties

▪ TPU create a graph for your training steps
▪ Graph is optimized & build.

▪ Slow optimization & build step

▪ Result is cached

▪ Tensors must all have the same length
▪ Or use different padding length, e.g. 64, 128, 196, 256

▪ Results in 4 graphs which are cached

https://huggingface.co/docs/accelerate/quicktour.html#training-on-tpu

Which datasets are suitable?

Standard training setup of a MiniLM v6 model, 2k training steps, 256 batch size

Which models work well?
Model Available in Flax / JAX? Speed

MPNet ❌ 2500

RoBERTa ✔️ 2500

BERT ✔️ 2500

DistilRoBERTa ✔️ (?) 4000

TinyBERT-L6 ✔️ 4500

DistilBERT ❌ 4000

MiniLM-L12 ✔️ 7500

MiniLM-L6 ✔️ 14200

ALBERT ✔️ 2500

mBERT ✔️ 2500

XLM-RoBERTa ❌ 2500

▪ Based on personal experience
▪ Ranked based on quality of derived embedding
▪ Better model != better model for embeddings (e.g. Electra performs rather bad)

Multi-Dataset Training

▪ How to train with datasets of different sizes?
▪ Natural Questions: 100k data pairs

▪ Reddit: 600M+ data pairs

▪ Option 1: Equal sampling from all datasets
▪ 50% NQ, 50% Reddit

▪ Option 2: Scaling with some temperature (see NMT literature)

▪ Option 3: Define a max data size, e.g. 1M
▪ For Reddit, assume the size is just 1M

▪ NQ: 100k

▪ => 10% NQ, 90% Reddit

▪ Add cross dataset batches?

How to train Multilingual Models

1) Have suitable training data in your languages,
e.g. (question, answer)

2) Train with translation bridging task:
▪ Have English data (e.g. (question, answer))

▪ Have parallel data (e.g. (english_sentence, german_sentence))

▪ Train alternating on English & parallel data

▪ Was used for: mUSE

Multilingual Knowledge Distillation

Hello World

Hallo Welt

Teacher
Model

Student
Model

0.8 -0.2 0.3

0.7 -0.1 0.3

0.9 -0.2 0.4

MSE-Loss

MSE-Loss

Teacher EN sentence vector

Student EN sentence vector

Student DE sentence vector

Parallel Data (EN-DE)

• Given:
• Teacher sentence embedding model T (e.g. SBERT trained on English STS)

• Parallel sentence data (𝑠1, 𝑡1 , … , (𝑠𝑛, 𝑡𝑛))

• Student model S with multilingual vocabulary (e.g. XLM-R + Mean Pooling)

• Train student S such that:
𝑆 𝑠𝑖 ≈ 𝑇(𝑠𝑖) 𝑆 𝑡𝑖 ≈ 𝑇(𝑠𝑖)

https://arxiv.org/abs/2004.09813

Multilingual Knowledge Distillation

▪ Advantages:
▪ Easy to extend models later to more languages

▪ Training setup is easier: Focus on good English model, then make it multilingual

▪ Works on the general text domain as good / better than alternative approaches

▪ Disadvantages:
▪ Ignores country / language specific properties

▪ People from Japan ask different question than people from US

▪ Authentic training pairs from the language required to learn this

Timeline

Next Steps

▪ Join the discord server

▪ See the spreadsheet

▪ Add info to team

▪ Join a subteam

▪ Contribute:
▪ Collect data
▪ Work on the data loader: Weighting of datasets, lazy loading, sub-dataset

batches vs. full-dataset batches (e.g. for StackOverflow, Reddit)

